Improving eigenspace-based MLLR adaptation by kernel PCA
نویسندگان
چکیده
Eigenspace-based MLLR (EMLLR) adaptation has been shown effective for fast speaker adaptation. It applies the basic idea of eigenvoice adaptation, and derives a small set of eigenmatrices using principal component analysis (PCA). The MLLR adaptation transformation of a new speaker is then a linear combination of the eigenmatrices. In this paper, we investigate the use of kernel PCA to find the eigenmatrices in the kernel-induced high dimensional feature space so as to exploit possible nonlinearity in the transformation supervector space. In addition, composite kernel is used to preserve the row information in the transformation supervector which, otherwise, will be lost during the mapping to the kernel-induced feature space. We call our new method kernel eigenspace-based MLLR (KEMLLR) adaptation. On a RM adaptation task, we find that KEMLLR adaptation may reduce the word error rate of a speaker-independent model by 11%, and outperforms MLLR and EMLLR adaptation.
منابع مشابه
A comparative study of two kernel eigenspace-based speaker adaptation methods on large vocabulary continuous speech recognition
Eigenvoice (EV) speaker adaptation has been shown effective for fast speaker adaptation when the amount of adaptation data is scarce. In the past two years, we have been investigating the application of kernel methods to improve EV speaker adaptation by exploiting possible nonlinearity in the speaker space, and two methods were proposed: embedded kernel eigenvoice (eKEV) and kernel eigenspace-b...
متن کاملFast speaker adaptation using eigenspace-based maximum likelihood linear regression
This paper presents an eigenspace-based fast speaker adaptation approach which can improve the modeling accuracy of the conventional maximum likelihood linear regression (MLLR) techniques when only very limited adaptation data is available. The proposed eigenspace-based MLLR approach was developed by introducing a priori knowledge analysis on the training speakers via PCA, so as to construct an...
متن کاملKernel Eigenspace-based Mllr Adaptation Using Multiple Regression Classes
Recently, we have been investigating the application of kernel methods to improve the performance of eigenvoice-based adaptation methods by exploiting possible nonlinearity in their original working space. We proposed the kernel eigenvoice adaptation (KEV) in [1], and the kernel eigenspace-based MLLR adaptation (KEMLLR) in [2]. In KEMLLR, speaker-dependent MLLR transformation matrices are mappe...
متن کاملRobustness of several kernel-based fast adaptation methods on noisy LVCSR
We have been investigating the use of kernel methods to improve conventional linear adaptation algorithms for fast adaptation, when there are less than 10s of adaptation speech. On clean speech, we had shown that our new kernel-based adaptation methods, namely, embedded kernel eigenvoice (eKEV) and kernel eigenspace-based MLLR (KEMLLR) outperformed their linear counterparts. In this paper, we s...
متن کاملSpeaker adaptation in transformation space using two-dimensional PCA
This paper describes a principled application of twodimensional principal component analysis (2DPCA) to the decomposition of transformation matrices of maximum likelihood linear regression (MLLR) and its application to speaker adaptation using the bases derived from the analysis. Our previous work applied 2DPCA to speaker-dependent (SD) models to obtain the bases for state space. In this work, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004